738 research outputs found

    Masking Release for Igbo and English

    Get PDF
    In this research, we explored the effect of noise interruption rate on speech intelligibility. Specifically, we used the Hearing In Noise Test (HINT) procedure with the original HINT stimuli (English) and Igbo stimuli to assess speech reception ability in interrupted noise. For a given noise level, the HINT test provides an estimate of the signal-to-noise ratio (SNR) required for 50%-correct speech intelligibility. The SNR for 50%-correct intelligibility changes depending upon the interruption rate of the noise. This phenomenon (called Masking Release) has been studied extensively in English but not for Igbo – which is an African tonal language spoken predominantly in South Eastern Nigeria. This experiment explored and compared the phenomenon of Masking Release for (i) native English speakers listening to English, (ii) native Igbo speakers listening to English, and (iii) native Igbo speakers listening to Igbo. Since Igbo is a tonal language and English is a non-tonal language, this allowed us to compare Masking Release patterns on native speakers of tonal and non-tonal languages. Our results for native English speakers listening to English HINT show that the SNR and the masking release are orderly and consistent with other English HINT data for English speakers. Our result for Igbo speakers listening to English HINT sentences show that there is greater variability in results across the different Igbo listeners than across the English listeners. This result likely reflects different levels of ability in the English language across the Igbo listeners. The masking release values in dB are less than for English listeners. Our results for Igbo speakers listening to Igbo show that in general, the SNRs for Igbo sentences are lower than for English/English and Igbo/English. This means that the Igbo listeners could understand 50% of the Igbo sentences at SNRs less than those required for English sentences by either native or non-native listeners. This result can be explained by the fact that the perception of Igbo utterances by Igbo subjects may have been aided by the prediction of tonal and vowel harmony features existent in the Igbo language. In agreement with other studies, our results also show that in a noisy environment listeners are able to perceive their native language better than a second language. The ability of native language speakers to perceive their language better than a second language in a noisy environment may be attributed to the fact that: a) Native speakers are more familiar with the sounds of their language than second language speakers. b) One of the features of language is that it is predictable hence even in noise a native speaker may be able to predict a succeeding word that is scarcely audible. These contextual effects are facilitated by familiarity.National Institutes of Health (U.S.) (Grant R01 DC00117

    Consonant identification using temporal fine structure and recovered envelope cues

    Get PDF
    The contribution of recovered envelopes (RENVs) to the utilization of temporal-fine structure (TFS) speech cues was examined in normal-hearing listeners. Consonant identification experiments used speech stimuli processed to present TFS or RENV cues. Experiment 1 examined the effects of exposure and presentation order using 16-band TFS speech and 40-band RENV speech recovered from 16-band TFS speech. Prior exposure to TFS speech aided in the reception of RENV speech. Performance on the two conditions was similar (∼50%-correct) for experienced listeners as was the pattern of consonant confusions. Experiment 2 examined the effect of varying the number of RENV bands recovered from 16-band TFS speech. Mean identification scores decreased as the number of RENV bands decreased from 40 to 8 and were only slightly above chance levels for 16 and 8 bands. Experiment 3 examined the effect of varying the number of bands in the TFS speech from which 40-band RENV speech was constructed. Performance fell from 85%- to 31%-correct as the number of TFS bands increased from 1 to 32. Overall, these results suggest that the interpretation of previous studies that have used TFS speech may have been confounded with the presence of RENVs.National Institutes of Health (U.S.) (Grant R01 DC00117)National Institutes of Health (U.S.) (Grant R43 DC013006

    Faint dwarfs as a test of DM models: WDM vs. CDM

    Full text link
    We use high resolution Hydro++N-Body cosmological simulations to compare the assembly and evolution of a small field dwarf (stellar mass ~ 106−7^{6-7} M⊙\odot, total mass 1010^{10} M⊙\odot in Λ\Lambda dominated CDM and 2keV WDM cosmologies. We find that star formation (SF) in the WDM model is reduced and delayed by 1-2 Gyr relative to the CDM model, independently of the details of SF and feedback. Independent of the DM model, but proportionally to the SF efficiency, gas outflows lower the central mass density through `dynamical heating', such that all realizations have circular velocities << 20kms at 500 ~pc, in agreement with local kinematic constraints. As a result of dynamical heating, older stars are less centrally concentrated than younger stars, similar to stellar population gradients observed in nearby dwarf galaxies. Introducing an important diagnostic of SF and feedback models, we translate our simulations into artificial color-magnitude diagrams and star formation histories in order to directly compare to available observations. The simulated galaxies formed most of their stars in many ∼\sim10 Myr long bursts. The CDM galaxy has a global SFH, HI abundance and Fe/H and alpha-elements distribution well matched to current observations of dwarf galaxies. These results highlight the importance of directly including `baryon physics' in simulations when 1) comparing predictions of galaxy formation models with the kinematics and number density of local dwarf galaxies and 2) differentiating between CDM and non-standard models with different DM or power spectra.Comment: 13 pages including Appendix on Color Magnitude Diagrams. Accepted by MNRAS. Added one plot and details on ChaNGa implementation. Reduced number of citations after editorial reques

    Level variations in speech: Effect on masking release in hearing-impaired listeners

    Get PDF
    Acoustic speech is marked by time-varying changes in the amplitude envelope that may pose difficulties for hearing-impaired listeners. Removal of these variations (e.g., by the Hilbert transform) could improve speech reception for such listeners, particularly in fluctuating interference. Léger, Reed, Desloge, Swaminathan, and Braida [(2015b). J. Acoust. Soc. Am. 138, 389–403] observed that a normalized measure of masking release obtained for hearing-impaired listeners using speech processed to preserve temporal fine-structure (TFS) cues was larger than that for unprocessed or envelope-based speech. This study measured masking release for two other speech signals in which level variations were minimal: peak clipping and TFS processing of an envelope signal. Consonant identification was measured for hearing-impaired listeners in backgrounds of continuous and fluctuating speech-shaped noise. The normalized masking release obtained using speech with normal variations in overall level was substantially less than that observed using speech processed to achieve highly restricted level variations. These results suggest that the performance of hearing-impaired listeners in fluctuating noise may be improved by signal processing that leads to a decrease in stimulus level variations.National Institutes of Health (U.S.) (R01DC000117

    Sensory Communication

    Get PDF
    Contains list of research project split into seven sections, listing researchers and grants.National Science Foundation (Grant BNS 84-11392)National Institutes of Health (Grant 5 RO1 NS10916)National Institutes of Health (Grant 5 RO1 NS12846)National Institutes of Health (Grant 5 RO1 NS14902)National Science Foundation (Grant BNS 84-17817)National Institutes of Health (Grant 1 RO1 NS21322)National Institutes of Health (Grant 1 P01 NS23734)National Science Foundation (Grant DMC 83-32460

    Auditory and tactile gap discrimination by observers with normal and impaired hearing

    Get PDF
    Temporal processing ability for the senses of hearing and touch was examined through the measurement of gap-duration discrimination thresholds (GDDTs) employing the same low-frequency sinusoidal stimuli in both modalities. GDDTs were measured in three groups of observers (normal-hearing, hearing-impaired, and normal-hearing with simulated hearing loss) covering an age range of 21–69 yr. GDDTs for a baseline gap of 6 ms were measured for four different combinations of 100-ms leading and trailing markers (250–250, 250–400, 400–250, and 400–400 Hz). Auditory measurements were obtained for monaural presentation over headphones and tactile measurements were obtained using sinusoidal vibrations presented to the left middle finger. The auditory GDDTs of the hearing-impaired listeners, which were larger than those of the normal-hearing observers, were well-reproduced in the listeners with simulated loss. The magnitude of the GDDT was generally independent of modality and showed effects of age in both modalities. The use of different-frequency compared to same-frequency markers led to a greater deterioration in auditory GDDTs compared to tactile GDDTs and may reflect differences in bandwidth properties between the two sensory systems.National Institute on Deafness and Other Communication Disorders (U.S.) (Grant R01 DC000117

    A new class of large-amplitude radial-mode hot subdwarf pulsators

    Full text link
    Using high-cadence observations from the Zwicky Transient Facility at low Galactic latitudes, we have discovered a new class of pulsating, hot compact stars. We have found four candidates, exhibiting blue colors (g − r ≤ −0.1 mag), pulsation amplitudes of >5%, and pulsation periods of 200–475 s. Fourier transforms of the light curves show only one dominant frequency. Phase-resolved spectroscopy for three objects reveals significant radial velocity, T eff, and log(g) variations over the pulsation cycle, which are consistent with large-amplitude radial oscillations. The mean T eff and log(g) for these stars are consistent with hot subdwarf B (sdB) effective temperatures and surface gravities. We calculate evolutionary tracks using MESA and adiabatic pulsations using GYRE for low-mass, helium-core pre-white dwarfs (pre-WDs) and low-mass helium-burning stars. Comparison of low-order radial oscillation mode periods with the observed pulsation periods show better agreement with the pre-WD models. Therefore, we suggest that these new pulsators and blue large-amplitude pulsators (BLAPs) could be members of the same class of pulsators, composed of young ≈0.25–0.35 M ⊙ helium-core pre-WDs.Published versio

    Auditory Psychophysics and Aids for the Deaf

    Get PDF
    Contains table of contents for Section 2, an introduction and list of sponsors and principal investigators for six research projects.National Institutes of Health Grant 2 R01 NS10916National Institutes of Health Grant 5 R01 NS14092National Institutes of Health Grant 2 R01 NS21322National Institutes of Health Grant 1 P01 NS23734National Science Foundation Grant DMC 83-3246

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on nine research projects and a list of publications.National Institutes of Health Grant 5 R01 DC00117National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Grant 1 P01 DC00361National Institutes of Health Grant 2 R01 DC00100National Institutes of Health Grant FV00428National Institutes of Health Grant 5 R01 DC00126U.S. Air Force - Office of Scientific Research Grant AFOSR 90-200U.S. Navy - Office of Naval Research Grant N00014-90-J-1935National Institutes of Health Grant 5 R29 DC0062
    • …
    corecore